DEPARTMENT OF PUBLIC HEALTH SCIENCES COURSES OFFERED BY QUARTER

Autumn 2023

Epidemiology and Population Health

PBHS 30910

COURSE INSTRUCTOR: Diane Lauderdale DAY & TIME: T/Th 3:30-4:50pm PQ: STAT 22000 or other introductory statistics highly desirable. CROSS-LIST ID: STAT 22810; ENST 27400; HLTH 20910; PPHA 36410

Epidemiology is the basic science of public health. It is the study of how diseases are distributed across populations and how one designs population-based studies to learn about disease causes, with the object of identifying preventive strategies. Epidemiology is a quantitative field and draws on biostatistical methods. Historically, epidemiology's roots were in the investigation of infectious disease outbreaks and epidemics. Since the mid-twentieth century, the scope of epidemiologic investigations has expanded to a fuller range non-infectious diseases and health problems. This course will introduce classic studies, study designs and analytic methods, with a focus on global health problems.

Social Inequalities in Health: Race/Ethnicity & Class

PBHS 31450 COURSE INSTRUCTOR: Aresha Martinez-Cardoso DAY & TIME: M 1:30-4:20pm PQ: PBHS 32100 or STAT 22000 or introductory statistics course. CROSS-LIST ID: CRES 27450, HLTH 27450

This course examines how social stratification and social inequality shape racial/ethnic and socioeconomic inequalities in health. In particular, we will explore the production of race and class inequality in the US and draw on the extant theoretical and empirical literature to understand how these social factors influence health behaviors and health outcomes. Finally, we will review both the classic and emerging methodological approaches used by public health and social scientists to measure and test how these features of society get "under the skin" to shape a variety of health outcomes.

Introduction to Biostatistics

PBHS 32100 COURSE INSTRUCTOR: John Cursio DAY & TIME: T//Th 11a-12:20p PQ: 2 quarters of pre-calculus CROSS-LIST ID: This course will provide an introduction to the basic concepts of statistics as applied to the bio-medical and public health sciences. Emphasis is on the use and interpretation of statistical tools for data analysis. Topics include (i) descriptive statistics; (ii) probability and sampling; (iii) the methods of statistical inference; and (iv) an introduction to linear and logistics regression. *In addition to the course, there is a statistical computing workshop held on Wednesdays from 11:30am-12:20pm.

Applied Regression Analysis

PBHS 32400 COURSE INSTRUCTOR: DAY & TIME: MWF PQ: PBHS 32100 or STAT 22000 or equivalent Students can take either PBHS 32400/STAT 22400 or PBHS 32410/STAT 22401

CROSS-LIST ID: STAT 22400 (Primary)

This course introduces the methods and applications of fitting and interpreting multiple regression models. The primary emphasis is on the method of least squares and its many varieties. Topics include the examination of residuals, the transformation of data, strategies and criteria for the selection of a regression equation, the use of dummy variables, tests of fit, nonlinear models, biases due to excluded variables and measurement error, and the use and interpretation of computer package regression programs. The techniques discussed are illustrated by many real examples involving data from both the natural and social sciences. Matrix notation is introduced as needed.

Introduction to Clinical Trials

PBHS 32901 COURSE INSTRUCTOR: Mei Polley DAY & TIME: T/TH 2-3:20pm PQ: PBHS 32100 or STAT 22000 or Introductory Biostatistics course (or equivalent) **AND** PBHS 32400 or PBHS 32410 (or equivalent); or consent of instructor CROSS-LIST ID: STAT 35201

This course will review major components of clinical trial conduct, including ethical and regulatory issues in human subject research, the formulation of clinical hypotheses and study endpoints, research protocol structure, various design elements, phase I-III trial designs, sample size methods, fundamentals of survival analysis, trial progress monitoring, and the analysis and reporting of clinical trial results. Additional topics may include roles of biomarkers in clinical trials and the broader impact of clinical trials on public health.

Multilevel Modeling

PBHS 33400 COURSE INSTRUCTOR: Don Hedeker DAY & TIME: T/Th 9:30-10:50am PQ: PBHS 32400 or PBHS 32410 and PBHS 32700 or consent of instructor. CROSS-LIST ID: CHDV 32401

This course will focus on the analysis of multilevel data in which subjects are nested within clusters (e.g., health care providers, hospitals). The focus will be on clustered data, and several extensions to the basic two-level multilevel model will be considered including three-level, cross-classified, multiple membership, and multivariate models. In addition to models for continuous outcomes, methods for non-normal outcomes will be covered, including multilevel models for dichotomous, ordinal, nominal, time-to-event, and count outcomes. Some statistical theory will be given, but the focus will be on application and interpretation of the statistical analyses.

Statistical Applications

PBHS 33500

COURSE INSTRUCTOR: Robert Gibbons DAY & TIME: M/W 1:30-2:50pm

PQ: PBHS 32400 or PBHS 32410 or equivalent, and PBHS 32600/STAT 22600, or PBHS 32700/STAT 22700 or equivalent; or consent of instructor. Knowledge of STATA and/or R highly recommended CROSS-LIST ID: STAT 35800; CHDV 32702

This course provides a transition between statistical theory and practice. The course will cover statistical applications in medicine, mental health, environmental science, analytical chemistry, and public policy.

Lectures are oriented around specific examples from a variety of content areas. Opportunities for the class to work on interesting applied problems presented by U of C faculty will be provided. Although an overview of relevant statistical theory will be presented, emphasis is on the development of statistical solutions to interesting applied problems.

Foundations of Public Health

PBHS 34100 COURSE INSTRUCTOR: David Moskowitz

DAY & TIME: T/Th 2-3:20pm

PQ: MPH students only; or consent of instructor

This course provides an overview and introduction to the role, theories, and methods of health promotion and health behavioral science in addressing the public health needs of the 21st Century. The course will cover a wide range of topics including: the history of public health, the basic institutional and organizational structures created to monitor public health; socio-cultural factors in disease etiology and the role of social conditions and social policy in addressing critical public health problems; individual, group, and community strategies for health behavior change; and current issues (e.g., eHealth) in behavioral science for health promotion. The course provides students with the opportunity to critically analyze current literature and gain an understanding of health promotion, its evolution, underlying theories, applications, and effectiveness in promoting health and preventing illness.

Introduction to U.S. Health Policy and Politics

PBHS 35500 COURSE INSTRUCTOR: Loren Saulsberry DAY & TIME: T/Th 12:30-1:50pm PQ: N/A

CROSS-LIST ID: HLTH 25500; PBPL 25500; SSAD 45011; PPHA 37720;

The purpose of this course is to introduce students to the concepts needed to critically evaluate U.S. health policy issues. The course will 1) provide an overview of the U.S. health system including its institutions, stakeholders, and financing mechanisms, 2) describe the politics of health and illuminate how the structure of our political system shapes health policy outcomes, and 3) offer a framework for assessing the critical features central to health policy debates. Building upon this knowledge, the course will conclude with a discussion of strategies for influencing the health policy process and how they might be employed in future leadership roles within the health sector.

Money, Medicine, and Markets: The Financialization of the US Health System

PBHS 35600

COURSE INSTRUCTOR: Joseph Bruch

DAY & TIME: T/Th, 3:30-4:50pm

PQ: Knowledge of US health care, such as through an introduction course

CROSS-LIST: HLTH 25600; SSAD 45601, PPHA 38340

This class tracks the complex ways capital influences health and health care delivery in the United States, with extensions to other national contexts. Broadly, this course is designed to provide students with the tools to identify and examine the nature of capital in shaping the health of Americans and is divided into 3 Parts. In Part 1, we will review the macro changes in health care delivery in the US over the past century, with readings focusing on financialization and its application to health care privatization and consolidation. In Part 2, the course visits different topics of health care where tensions between profit maximization, health care quality, and health equity are most visible. These topics include nonprofit vs. for-profit actors, private-public partnerships, the pharmaceutical industry, private equity activity, the insurance industry, physician entrepreneurs, management consultants, and the women's health industry. In Part 3, using concepts from political economy and epidemiology, we will grapple with embodiment and the link between capitalism and population health through financial lending, macroeconomic conditions, economic inequality, and the commercial determinants of health. This course will introduce students to cutting-edge scholarship across a range of fields, including health economics, public health, sociology, and political science.

MPH Capstone

PBHS 39300 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: PQ: MPH students only; or consent of instructor

DEPARTMENT OF PUBLIC HEALTH SCIENCES COURSES

Winter 2024

Epidemiologic Methods

PBHS 31001 COURSE INSTRUCTOR: Dezheng Huo DAY & TIME: T/Th 12:30-1:50pm

PQ: PBHS 30910 <u>and</u> PBHS 32400/STAT 22400 or PBHS 32410 (taken concurrently) or applied statistics courses through multivariate regression.

CROSS-LIST ID: STAT 35700

This course provides students with an in-depth understanding of epidemiologic concepts and methods. It is the second course in the epidemiology series. The focus of this course will be in practical and theoretical considerations of observational research methods; statistical methods and applications in epidemiologic studies; in-depth evaluation of bias, confounding, and interaction; and communicating epidemiologic findings. Students will also learn how to perform data analysis using classic methods.

Regression Analysis for Health and Social Research

PBHS 32410 COURSE INSTRUCTOR: Jim Dignam DAY & TIME: T/Th 11a-12:20p PQ: PBHS 32100 or STAT 22000 or equivalent Students can take either PBHS 32400/STAT 22400 or PBHS 32410/STAT 22401, but not both. CROSS-LIST ID: STAT 22401 This course is an introduction to the methods and applications of fitting and interpreting multiple regression models. The main emphasis is on the method of least squares. Topics include the examination of residuals, the transformation of data

main emphasis is on the method of least squares. Topics include the examination of residuals, the transformation of data, strategies and criteria for the selection of a regression equation, the use of dummy variables, tests of fit. Stata computer package will be used extensively, but previous familiarity with Stata is not assumed. The techniques discussed will be illustrated by real examples involving health and social science data.

Applied Longitudinal Data Analysis

PBHS 33300 COURSE INSTRUCTOR: Don Hedeker DAY & TIME: T/TH 9:30-10:50am PQ: PBHS 32400 or PBHS 32410 or equivalent, and PBHS 32600/STAT 22600, or PBHS 32700/STAT 22700 or equivalent; or consent of instructor. CROSS-LIST ID: STAT 36900; CHDV 32501

Longitudinal data consist of multiple measures over time on a sample of individuals. This type of data occurs extensively in both observational and experimental biomedical and public health sciences, as well as in studies in sociology and applied economics. This course will provide an introduction to the principles and methods for the analysis of longitudinal data. Whereas some supporting statistical theory will be given, emphasis will be on data analysis and interpretation of models for longitudinal data. Problems will be motivated by applications in epidemiology, clinical medicine, health services research, and disease natural history studies.

Foundations of Public Health

PBHS 34100 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: T/Th 9:30-10:50am

PQ: MPH students only; or consent of instructor

This course provides an overview and introduction to the role, theories, and methods of health promotion and health behavioral science in addressing the public health needs of the 21st Century. The course will cover a wide range of topics including: the history of public health, the basic institutional and organizational structures created to monitor public health; socio-cultural factors in disease etiology and the role of social conditions and social policy in addressing critical public health problems; individual, group, and community strategies for health behavior change; and current issues (e.g., eHealth) in behavioral science for health promotion. The course provides students with the opportunity to critically analyze current literature and gain an understanding of health promotion, its evolution, underlying theories, applications, and effectiveness in promoting health and preventing illness. Health Behavior Theory & Health Communication

PBHS 34200

COURSE INSTRUCTOR: Marcia Tan and David Moskowitz

Day/Time: T/Th 2-3:20pm

PQ: MPH Student Only; or Consent of Instructor

This course addresses the psychological, social, and environmental determinants of a wide range of health and healthrelated behavior. Theoretical models from the behavioral and social sciences will be used to explain health behavior at the individual, interpersonal, and community levels. The course emphasizes the acquisition of theoretical understandings, but also is intended to improve actions or activities undertaken for the purpose of promoting, preserving, or restoring wellness. Towards that end, students in this course will learn how to use peer-reviewed research and key social marketing principles to develop a comprehensive and effective social marketing campaign; learn how to target health communication efforts towards specific audiences and via varied channels of distribution; understand the role of social media and technology in facilitating/influencing behavior changes; study current examples of successful social marketing initiatives; and discuss the ethics surrounding health communication and social marketing efforts.

Computer Programming for Public Health

PBHS 34400 COURSE INSTRUCTOR: Jason Edelstein Day/Time: T 5-7:50pm

PQ:

This course will provide an introductory and intermediate level overview of computer science and programming skills. Students will learn concepts in computer programming and how programming language works, as well as theories behind information system design and management. Specific topics include: Python and R programming language, data structures and management, algorithm design, data visualizations, and basic project management for reproducible research.

Mixed Method Research in Community Settings

PBHS 34600 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: TBD PQ:

This course is designed to train students in mixed methods research design and evaluation. Mixed methods are the use of quantitative AND qualitative methods to explore health problems, engage communities, and evaluate solutions. It includes an in-depth discussion of the rationales for specific techniques and the role of theory in guiding and informing a health research project. Students will learn design considerations that are best suited for qualitative over quantitative methods (and vice versa) or both methods. Specifically, the course focuses on training, through lecture, group work and hands-on experiences, across five data collection methods commonly used in mixed methods research: survey design and implementation, observation, interview, focus group, and use of existing quantitative data. Students will undertake a pilot research study as a means of practicing their mixed methods approaches and data collection skills. Multiple data analyses techniques (e.g., content analysis, narrative analysis, multivariable model construction, qual-quant triangulation) will be conceptually explained. Students will leave the course with practical skills to conduct research through public health practice.

Community Health Promotion

PBHS 34700 COURSE INSTRUCTOR: Jasmin Tiro DAY & TIME: T/Th 3:30-4:50pm PQ: PBHS 34100

A person's health depends not only their genes or behavior, but also where they live, learn, work, play, and age. This course examines how social and community structures and policies influence health and can produce health disparities. Structural issues (e.g., economic stability, housing, food security, health care access and quality, broadband access, health and digital literacy, violence, discrimination) are key social determinants of health. This course will describe and apply: 1) frameworks for understanding health determinants acting at multiple levels, and 2) community and structural intervention approaches to promote health. Students will learn how to prioritize among health determinants and select among intervention approaches to solve public health problems and improve public health practice.

Economic Analysis of Health Policies

PBHS 38010 COURSE INSTRUCTOR: Betsy Cliff DAY & TIME: M/W 1:30-2:50pm PQ: Microeconomics course recommended; Consent of instructor for undergrads.

CROSS-LIST ID: HLTH 28010; PPHA 38290

This course covers the foundations of the economics of health care as applied to current issues of health care policy. Content includes demand for health, medical care, and insurance; supply of medical care and behavior of health care practitioners; and economic perspectives on measurement in health care research. Using a combination of lectures, readings, problem sets, and discussion of newspaper and journal articles, the goal is for students to acquire a basic understanding of economic knowledge and thinking and to be able to apply that knowledge in analyzing policies. The course is open to graduate students and a limited number of undergraduates. A prior course in microeconomics is recommended; for those students without this preparation, the beginning of the course will include a short primer on key concepts in microeconomics.

Advanced Topics in Health Economics

PBHS 38400

COURSE INSTRUCTOR: Tamara Konetzka

OFFERED: T/Th 12:30-1:50pm

PQ: Graduate courses in microeconomics and econometrics or statistics, including the use of linear and nonlinear regression methods.

The purpose of this course is to provide substantial exposure to the state of the evidence and the major theoretical and empirical approaches used to study salient issues in health economics. Selected topics may vary from year to year; examples include health capital, health insurance, health behaviors, health care market structure and competition, not-for-profit ownership, payment incentives, and the effects of information on provider behavior (e.g. public reporting and value-based purchasing) and consumer behavior (e.g., advertising and medical decision making). The course is aimed at students who wish to pursue a career in, or related to, health economics. Students will be expected to read each paper in depth, participate in discussions about them, and present and discuss several papers during the quarter. The instructors will assume that students have had prior graduate courses in microeconomics and econometrics or statistics, including the use of linear and nonlinear regression methods.

MPH Capstone

PBHS 39300 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: TBA PQ: MPH students only; or consent of instructor

Introduction to Causal Inference

PBHS 43201 COURSE INSTRUCTOR: Kazuo Yamaguchi DAY & TIME: W 1:30-4:20pm PQ: Intermediate statistics or equivalent such as PBHS 32400, PBHS 32410, PPHA 31301, BUS 41100 or SOCI 30005. CROSS-LIST ID: CHDV 30102 (Primary)

This course is designed for graduate students and advanced undergraduate students from social sciences, education, public policy, public health sciences, social service administration, and statistics who are involved in quantitative research and are interested in studying causality. The course begins by introducing the notion of counterfactual outcomes and various causal inference techniques that are comparatively new to most social scientists. A major emphasis will be placed on conceptualizing causal questions, comparing alternative research designs, and identifying the assumptions under which a causal effect can be estimated from non-experimental data. In addition to studying experimental, quasi-experimental, and non-experimental designs, students will become familiar with causal inference techniques suitable for evaluating binary treatments, concurrent multi-valued treatments, time-varying treatments, as well as moderated and mediated treatment effects in non-experimental data

DEPARTMENT OF PUBLIC HEALTH SCIENCES COURSES

Spring 2024

Introduction to Mathematical Modeling in Public Health

PBHS 31100 COURSE INSTRUCTOR: Olga Morozova DAY & TIME: TBD PQ:

Modeling is a simplified representation of reality that aims to capture essential features of a real-life object or process. Mathematical modeling in public health encompasses a wide array of methodologies offering a powerful toolkit to approach questions that would otherwise be extremely difficult or impossible to answer. This course will introduce students to the conceptual framework of mechanistic modeling and cover the basics of the most widely used mathematical modeling approaches in public health. The course will combine lectures and interactive computer sessions to help students develop practical skills of using basic quantitative techniques.

Introduction to Infectious Disease Epidemiology

PBHS 31300 COURSE INSTRUCTOR: DAY & TIME: W 5:30-8:30pm PQ: PBHS 30910 (STAT 22810/ENST 27400/HLTH 20910/PPHA 36410) or introductory epidemiology course CROSS-LIST ID: BIOS 25419

This intermediate-level course will build off basic epidemiology foundations to understand principles of infectious disease epidemiology as well as focus on specific diseases & their public health significance. We will examine disease transmission and the interactions between pathogens, hosts, and environment. This course introduces key pathogens, diagnostics, and immune responses. In addition, we will explore the roles of climate change, globalization, and social determinants of health on infectious diseases. Students will learn about research and public health responses to infectious diseases, including study design, modeling, molecular epidemiology, surveillance, outbreak investigation, and prevention

Genetic & Molecular Epidemiology

PBHS 31831 COURSE INSTRUCTOR: Brandon Pierce DAY & TIME: T/TH 9:30-10:50am

PQ: PBHS 30910 (or introductory epidemiology) AND HGEN 47000 (or introductory genetics).

This course is designed for students with research interests related to identifying and characterizing the role of genetic and molecular factors in human disease risk and prognosis. Students will be introduced to the key concepts and methodological issues encountered in epidemiological studies that utilize genetic and molecular data. This course will train students on the theoretical and practical aspects of study design and data generation, and also provide the relevant hands-on training for quality control, management, and analysis of large-scale genomic/molecular data. Students are expected to have taken prior coursework in genetics as well as introductory statistics and/or epidemiology.

Global Health Metrics

PBHS 31900 COURSE INSTRUCTOR: Kavi Bhalla DAY & TIME: T/Th 11a-12:20p PQ: Consent of instructor for undergrads (limited to 3rd & 4th yr undergrads) CROSS-LIST ID: HLTH 27905; PBPL 27905 This course provides an overview of the causes of illness and injury in populat

This course provides an overview of the causes of illness and injury in populations across the world and the most important risk factors. We will discuss how population health is measured using summary indicators that combine mortality and non-fatal health outcomes. We will use these indicators to compare and contrast the health of populations across global regions and in time. Sound measurement of the global burden of disease is essential for prioritizing prevention strategies. Therefore, there will be a strong emphasis on understanding how data sources in information-poor settings are used to generate estimates of population health.

Biostatistical Methods

PBHS 32700 COURSE INSTRUCTOR: Lin Chen DAY & TIME: T/Th 12:30-1:50pm PQ: PBHS 32400, PBHS 32410 or STAT 24500; or equivalent; or consent of instructor

CROSS-LIST ID: STAT 22700

This course is designed to provide students with tools for analyzing categorical, count and time-to-event data frequently encountered in medicine, public health and related biological and social sciences. The course will emphasize application of the methodology rather than statistical theory, including recognition of the appropriate methods, interpretation and presentation of results. Methods covered include: contingency table analysis, Kaplan-Meier survival analysis, Cox proportional-hazards survival analysis, logistic regression, Poisson regression.

Sexual Health: Identity, Behavior, and Outcomes – ???

PBHS 33700 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: M/W 3-4:20pm PQ:

CROSS-LIST ID: PBHS 23700; GNSE 23702, GNSE 33702; HLTH 23700

Sexual health is a growing component of public health outreach. The goal of this course is to provide students with a foundational understanding of sexual health from a public health perspective. Through participation in this course, students will increase their knowledge about the history of sexual health promotion in the public health sphere. They will delve into sexual and gender identity construction and explore identity-behavioral expressions. They will critically examine and discuss common sexual health issues addressed by public health practitioners, their epidemiology, and their underlying social determinants; a global health lens will be applied to such examinations. Additionally, recognition of the key methodological considerations in the measurement of sexual behavior and sexual health outcomes will be elucidated (including strengths and limitations of various methodological approaches –quantitative, qualitative, clinical, and biomedical). By the completion of the course, students should be able to demonstrate knowledge and application of key theoretical foundations of sexual health promotion and sexual health behavior change and be able to promote sexual health messages through marketing and dissemination. From a policy perspective, student can expect an increased knowledge about issues related to social and legislative policy analyses, their applications, and implications.

Public Health Programs: Planning, Implementation & Evaluation

PBHS 34300 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: M/W 10:30-11:50am

PQ: MPH Students Only; or Consent of Instructor

The course is designed to provide students with an overview of how to develop public health programs and interventions. Students will learn the best ways to help solve the critical health issues affecting our communities at local, national, and international levels. Students will learn the start-to-finish processes of public health programming including understanding the problem using existent data, needs assessments/surveillance, using goals/objectives, basic design, message construction, planning, implementation, and creating an evaluation system that links back to goals/objectives. The course will also include an overview of effective evidence-based public health interventions that span multiple health domains and delivery modalities. Students will have the opportunity to create their own health programs through the quarter.

Machine Learning for Public Health

PBHS 34500 COURSE INSTRUCTOR: Eric Polley DAY & TIME: T/Th 2-3:20pm PQ: PBHS 32400/STAT 22400 or PBHS 32410 or equivalent AND PBHS 34400 or equivalent programming course. Limited to MPH Students; Consent of Instructor for PBHS Graduate and Doctoral Students

This course provides an introduction to machine learning in the context of public health and medical applications. Key concepts in the design and evaluation of machine learning algorithms will be presented. A variety of algorithms will be covered (e.g. random forests, splines, boosting, neural networks, and ensembles) and include hands-on experience with programming in *R*.

Health Services Research Methods

PBHS 35100 COURSE INSTRUCTOR: Prachi Sanghavi DAY & TIME: M/W 1:30-2:50pm PQ: At least one course in linear regression and basic familiarity with STATA; or consent of instructor. CROSS-LIST ID: HLTH 29100; PPHA 38010; SSAD 46300; The purpose of this course is to better acquaint students with the methodological issues of research design and data

analysis widely used in empirical health services research. To deal with these methods, the course will use a combination of readings, lectures, problem sets (using STATA), and discussion of applications. The course assumes that students have had a prior course in statistics, including the use of linear regression methods.

MPH Capstone

PBHS 39300 COURSE INSTRUCTOR: David Moskowitz DAY & TIME: TBD PQ: MPH students only; or consent of instructor

Advanced Epidemiologic Methods

PBHS 40500 COURSE INSTRUCTOR: Dezheng Huo DAY & TIME: M/W 10:30-11:50am PQ: PBHS 31001 and PBHS 32410/STAT 22401 This course examines some features of study design but is primarily focused on analytic issues encountered in epidemiologic research. The objective of this course is to enable students to conduct thoughtful analysis of epidemiologic and other population research data. Concepts and methods that will be covered include: matching, sampling, conditional logistic regression, survival analysis, ordinal and polytomous logistic regressions, multiple imputation, and screening and diagnostic test evaluation. The course follows in sequence the material presented in "Epidemiologic Methods."

Applied Bayesian Modeling and Inference

PBHS 43010 COURSE INSTRUCTOR: Yuan Ji DAY & TIME: T/Th 12:30-1:50pm PQ: STAT 24400 and STAT 24500 or master level training in statistics. CROSS-LIST ID: STAT 35920

Course begins with basic probability and distribution theory and covers a wide range of topics related to Bayesian modeling, computation, and inference. Significant amount of effort will be directed to teaching students on how to build and apply hierarchical models and perform posterior inference. The first half of the course will be focused on basic theory, modeling, and computation using Markov chain Monte Carlo methods, and the second half of the course will be about advanced models and applications. Computation and application will be emphasized so that students will be able to solve real-world problems with Bayesian techniques.

DEPARTMENT OF PUBLIC HEALTH SCIENCES COMPLETE LIST OF COURSES

Epidemiology and Population Health

PBHS 30910 COURSE INSTRUCTOR: Diane Lauderdale OFFERED: Autumn PQ: STAT 22000 or other introductory statistics highly desirable. CROSS-LIST ID: ENST 27400; HLTH 20910; STAT 22810; PPHA 36410 Epidemiology is the basic science of public health. It is the study of how diseases are distributed across populations and how one designs population-based studies to learn about disease causes, with the object of identifying preventive strategies. Epidemiology is a quantitative field and draws on biostatistical methods. Historically, epidemiology's roots were in the investigation of infectious disease outbreaks and epidemics. Since the mid-twentieth century, the scope of epidemiologic investigations has expanded to a fuller range non-infectious diseases and health problems. This course will introduce classic studies, study designs and analytic methods, with a focus on global health problems.

Epidemiologic Methods

PBHS 31001 COURSE INSTRUCTOR: Brian Chiu or Dezheng Huo OFFERED: Winter PQ: PBHS 30910 <u>and</u> PBHS 32400/STAT 22400 or PBHS 32410 (taken concurrently) or applied statistics courses through multivariate regression. CROSS-LIST ID: STAT 35700

This course provides students with an in-depth understanding of epidemiologic concepts and methods. It is the second course in the epidemiology series. The focus of this course will be in practical and theoretical considerations of observational research methods; statistical methods and applications in epidemiologic studies; in-depth evaluation of bias, confounding, and interaction; and communicating epidemiologic findings. Students will also learn how to perform data analysis using classic methods.

Introduction to Mathematical Modeling in Public Health

PBHS 31100 COURSE INSTRUCTOR: Olga Morozova OFFERED: Spring PQ:

Modeling is a simplified representation of reality that aims to capture essential features of a real-life object or process. Mathematical modeling in public health encompasses a wide array of methodologies offering a powerful toolkit to approach questions that would otherwise be extremely difficult or impossible to answer. This course will introduce students to the conceptual framework of mechanistic modeling and cover the basics of the most widely used mathematical modeling approaches in public health. The course will combine lectures and interactive computer sessions to help students develop practical skills of using basic quantitative techniques.

Cancer Epidemiology

PBHS 31200 COURSE INSTRUCTOR: Brian Chiu OFFERED: Winter 2025? (Course not offered every year) PQ: PBHS 30910

The purpose of this course is to review the basic concepts and issues relevant to cancer epidemiology. Specifically, this course will focus on interpreting cancer statistics, and describing the current state of knowledge regarding the etiology and risk factors for the major cancer sites. In addition, issues in research design and interpretation within the context of cancer epidemiology, as well as the molecular and cellular basis of carcinogenesis as it pertains to cancer occurrence in populations will be discussed. The course is appropriate for students who have an introductory knowledge of epidemiology. Previous study of cancer biology is helpful but not required.

Introduction to Infectious Disease Epidemiology

PBHS 31300 COURSE INSTRUCTOR: Maria Pyra OFFERED: Spring PQ: PBHS 30910 or Introductory Epidemiology or consent of instructor CROSS-LIST ID: BIOS 25419 This intermediate-level course will build off basic epidemiology foundations to understand principles of infectious disease epidemiology as well as focus on specific diseases & their public health significance. We will examine disease transmission and the interactions between pathogens, hosts, and environment. This course introduces key pathogens, diagnostics, and immune responses. In addition, we will explore the roles of climate change, globalization, and social determinants of health on infectious diseases. Students will learn about research and public health responses to infectious diseases, including study design, modeling, molecular epidemiology, surveillance, outbreak investigation, and prevention

Social Inequalities in Health: Race/Ethnicity & Class

PBHS 31450 COURSE INSTRUCTOR: Aresha Martinez-Cardoso OFFERED: Spring PQ: Introductory statistics course. CROSS-LIST ID: CRES 27450, HLTH 27450

This course examines how social stratification and social inequality shape racial/ethnic and socioeconomic inequalities in health. In particular, we will explore the production of race and class inequality in the US and draw on the extant theoretical and empirical literature to understand how these social factors influence health behaviors and health outcomes. Finally, we will review both the classic and emerging methodological approaches used by public health and social scientists to measure and test how these features of society get "under the skin" to shape a variety of health outcomes.

Critical Readings in Epidemiology

PBHS 31510 COURSE INSTRUCTOR: TBD OFFERED: TBD PQ: PBHS 30910 Course consists of reading and o

Course consists of reading and critiquing important and innovative recent papers in epidemiology. Each week, there will be a different substantive or disease focus for the papers. Research areas covered will be primarily, but not exclusively, in noninfectious diseases. Different faculty will lead the discussion each week and students will prepare and present summary critiques of the articles.

Environmental Health

PBHS 31710 COURSE INSTRUCTOR: Brisa Aschebrook-Kilfoy OFFERED: Spring 2024 PQ: Introductory statistics recommended CROSS-LIST ID: PBHS 22710

This course provides an introduction to topics and methods in environmental epidemiology. Topical areas include selected air and water pollutants, radiation, pesticides, metals, environmental microbial exposures, persistent organic pollutants, endocrine-disrupting chemicals, disease clusters, disaster epidemiology, environmental justice, and climate change. Exposure assessment and statistical methods for evaluation of environmental and occupational factors will be considered in the context of specific applications

Genetic & Molecular Epidemiology

PBHS 31831

COURSE INSTRUCTOR: Brandon Pierce

OFFERED: Spring (Course not offered every year)

PQ: PBHS 30910 (or introductory epidemiology) AND HGEN 47000.

This course is designed for students with research interests related to identifying and characterizing the role of genetic and molecular factors in human disease risk and prognosis. Students will be introduced to the key concepts and methodological issues encountered in epidemiological studies that utilize genetic and molecular data. This course will train students on the theoretical and practical aspects of study design and data generation, and also provide the relevant hands-on training for quality control, management, and analysis of large-scale genomic/molecular data. Students are expected to have taken prior coursework in genetics as well as introductory statistics and/or epidemiology.

Global Health Metrics

PBHS 31900 COURSE INSTRUCTOR: Kavi Bhalla OFFERED: Spring PQ: Consent of Instructor; limited to 3rd & 4th yr undergrads CROSS-LIST ID: PBPL 27905; HLTH 27905 This course provides an overview of the causes of illness and injury in populations across the world and the most important risk factors. We will discuss how population health is measured using summary indicators that combine mortality and non-fatal health outcomes. We will use these indicators to compare and contrast the health of populations across global regions and in time. Sound measurement of the global burden of disease is essential for prioritizing prevention strategies. Therefore, there will be a strong emphasis on understanding how data sources in information-poor settings are used to generate estimates of population health.

Introduction to Biostatistics

PBHS 32100 COURSE INSTRUCTOR: John Cursio OFFERED: Autumn PQ: 2 quarters of pre-calculus CROSS-LIST ID:

This course will provide an introduction to the basic concepts of statistics as applied to the bio-medical and public health sciences. Emphasis is on the use and interpretation of statistical tools for data analysis. Topics include (i) descriptive statistics; (ii) probability and sampling; (iii) the methods of statistical inference; and (iv) an introduction to linear and logistics regression.

*In addition to the course, there is a statistical computing workshop held on Wednesdays from 10-11:30am in BSLC 018.

Applied Regression Analysis

PBHS 32400 COURSE INSTRUCTOR: OFFERED: Autumn PQ: PBHS 32100 or STAT 22000 or equivalent Students can take either PBHS 32400/STAT 22400 or PBHS 32410/STAT 22401 CROSS-LIST ID: STAT 22400 (Primary) This course introduces the methods and applications of fitting and interpreting multiple regression models. The primary emphasis is on the method of least squares and its many varieties. Topics include the examination of residuals, the transformation of data, strategies and criteria for the selection of a regression equation, the use of dummy variables, tests of fit, nonlinear models, biases due to excluded variables and measurement error, and the use and interpretation of

computer package regression programs. The techniques discussed are illustrated by many real examples involving data from both the natural and social sciences. Matrix notation is introduced as needed.

Regression Analysis for Health and Social Research

PBHS 32410 COURSE INSTRUCTOR: Jim Dignam OFFERED: Winter PQ: PBHS 32100 or STAT 22000 or equivalent Students can take either PBHS 32400/STAT 22400 or PBHS 32410/STAT 22401 CROSS-LIST ID: STAT 22401

This course is an introduction to the methods and applications of fitting and interpreting multiple regression models. The main emphasis is on the method of least squares. Topics include the examination of residuals, the transformation of data, strategies and criteria for the selection of a regression equation, the use of dummy variables, tests of fit. Stata computer package will be used extensively, but previous familiarity with Stata is not assumed. The techniques discussed will be illustrated by real examples involving health and social science data.

Analysis of Categorical Data

PBHS 32600 COURSE INSTRUCTOR: TBN OFFERED: Winter PQ: PBHS 32100; STAT 22000; or consent of instructor. CROSS-LIST ID: STAT 22600 (Primary)

This course covers statistical methods for the analysis of qualitative and counted data. Topics include description and inference for binomial and multinomial data using proportions and odds ratios; multi-way contingency tables; generalized linear models for discrete data; logistic regression for binary responses; multi-category logit models for nominal and ordinal responses; loglinear models for counted data; and inference for matched-pairs and correlated data. Applications and interpretations of statistical models are emphasized.

Biostatistical Methods

PBHS 32700 COURSE INSTRUCTOR: Lin Chen OFFERED: Spring PQ: PBHS 32400, PBHS 32410 or STAT 24500; or equivalent; or consent of instructor CROSS-LIST ID: STAT 22700

This course is designed to provide students with tools for analyzing categorical, count and time-to-event data frequently encountered in medicine, public health and related biological and social sciences. The course will emphasize application of the methodology rather than statistical theory, including recognition of the appropriate methods, interpretation and presentation of results. Methods covered include: contingency table analysis, Kaplan-Meier survival analysis, Cox proportional-hazards survival analysis, logistic regression, Poisson regression.

Introduction to Clinical Trials

PBHS 32901

COURSE INSTRUCTOR: Mei Polley

OFFERED: Autumn

PQ: PBHS 32100 or STAT 22000 or Introductory Biostatistics course (or equivalent) **AND** PBHS 32400 or PBHS 32410 (or equivalent); or consent of instructor

CROSS-LIST ID: STAT 35201

This course will review major components of clinical trial conduct, including ethical and regulatory issues in human subject research, the formulation of clinical hypotheses and study endpoints, research protocol structure, various design elements, phase I-III trial designs, sample size methods, fundamentals of survival analysis, trial progress monitoring, and the analysis and reporting of clinical trial results. Additional topics may include roles of biomarkers in clinical trials and the broader impact of clinical trials on public health.

Applied Longitudinal Data Analysis

PBHS 33300

COURSE INSTRUCTOR: Don Hedeker

OFFERED: Winter

PQ: PBHS 32400, PBHS 32410 or equivalent, and PBHS 32600/STAT 22600 or PBHS 32700/STAT 22700 or equivalent; or consent of instructor.

CROSS-LIST ID: STAT 36900; CHDV 32501

Longitudinal data consist of multiple measures over time on a sample of individuals. This type of data occurs extensively in both observational and experimental biomedical and public health sciences, as well as in studies in sociology and applied economics. This course will provide an introduction to the principles and methods for the analysis of longitudinal data. Whereas some supporting statistical theory will be given, emphasis will be on data analysis and interpretation of models for longitudinal data. Problems will be motivated by applications in epidemiology, clinical medicine, health services research, and disease natural history studies.

Multilevel Modeling

PBHS 33400 COURSE INSTRUCTOR: Don Hedeker OFFERED: Autumn (Course not offered every year) PQ: PBHS 32400 or PBHS 32410 and PBHS 32700 or consent of instructor. CROSS-LIST ID: CHDV 32401

This course will focus on the analysis of multilevel data in which subjects are nested within clusters (e.g., health care providers, hospitals). The focus will be on clustered data, and several extensions to the basic two-level multilevel model will be considered including three-level, cross-classified, multiple membership, and multivariate models. In addition to models for continuous outcomes, methods for non-normal outcomes will be covered, including multilevel models for dichotomous, ordinal, nominal, time-to-event, and count outcomes. Some statistical theory will be given, but the focus will be on application and interpretation of the statistical analyses.

Statistical Applications

PBHS 33500 COURSE INSTRUCTOR: Robert Gibbons OFFERED: Fall PQ: PBHS 32400, PBHS 32410 or equivalent, and PBHS 32600/STAT 22600 or PBHS 32700/STAT 22700 or equivalent; or consent of instructor. Knowledge of STATA and/or R highly recommended. CROSS-LIST ID: STAT 35800; CHDV 32702 This course provides a transition between statistical theory and practice. The course will cover statistical applications in medicine, mental health, environmental science, analytical chemistry, and public policy. Lectures are oriented around specific examples from a variety of content areas. Opportunities for the class to work on interesting applied problems presented by U of C faculty will be provided. Although an overview of relevant statistical theory will be presented, emphasis is on the development of statistical solutions to interesting applied problems.

Sexual Health: Identity, Behavior, and Outcomes

PBHS 33700 COURSE INSTRUCTOR: David Moskowitz OFFERED: Spring PQ:

CROSS-LIST ID: PBHS 23700; GNSE 23702, GNSE 33702; HLTH 23700

Sexual health is a growing component of public health outreach. The goal of this course is to provide students with a foundational understanding of sexual health from a public health perspective. Through participation in this course, students will increase their knowledge about the history of sexual health promotion in the public health sphere. They will delve into sexual and gender identity construction and explore identity-behavioral expressions. They will critically examine and discuss common sexual health issues addressed by public health practitioners, their epidemiology, and their underlying social determinants; a global health lens will be applied to such examinations. Additionally, recognition of the key methodological considerations in the measurement of sexual behavior and sexual health outcomes will be elucidated (including strengths and limitations of various methodological approaches –quantitative, qualitative, clinical, and biomedical). By the completion of the course, students should be able to demonstrate knowledge and application of key theoretical foundations of sexual health promotion and sexual health behavior change and be able to promote sexual health messages through marketing and dissemination. From a policy perspective, student can expect an increased knowledge about issues related to social and legislative policy analyses, their applications, and implications.

Foundations of Public Health

PBHS 34100

COURSE INSTRUCTOR: David Moskowitz

OFFERED: Autumn, Winter

PQ: MPH Student Only; or Consent of Instructor

This course provides an overview and introduction to the role, theories, and methods of health promotion and health behavioral science in addressing the public health needs of the 21st Century. The course will cover a wide range of topics including: the history of public health, the basic institutional and organizational structures created to monitor public health; socio-cultural factors in disease etiology and the role of social conditions and social policy in addressing critical public health problems; individual, group, and community strategies for health behavior change; and current issues (e.g., eHealth) in behavioral science for health promotion. The course provides students with the opportunity to critically analyze current literature and gain an understanding of health promotion, its evolution, underlying theories, applications, and effectiveness in promoting health and preventing illness.

Health Behavior Theory & Health Communication

PBHS 34200 COURSE INSTRUCTOR: Marcia Tan and David Moskowitz OFFERED: Winter

PQ: MPH Student Only; or Consent of Instructor

This course addresses the psychological, social, and environmental determinants of a wide range of health and healthrelated behavior. Theoretical models from the behavioral and social sciences will be used to explain health behavior at the individual, interpersonal, and community levels. The course emphasizes the acquisition of theoretical understandings, but also is intended to improve actions or activities undertaken for the purpose of promoting, preserving, or restoring wellness. Towards that end, students in this course will learn how to use peer-reviewed research and key social marketing principles to develop a comprehensive and effective social marketing campaign; learn how to target health communication efforts towards specific audiences and via varied channels of distribution; understand the role of social media and technology in facilitating/influencing behavior changes; study current examples of successful social marketing initiatives; and discuss the ethics surrounding health communication and social marketing efforts.

Public Health Programs: Planning, Implementation & Evaluation

PBHS 34300 COURSE INSTRUCTOR: David Moskowitz OFFERED: Spring PQ: MPH Student Only; or Consent of Instructor The course is designed to provide students with an overview of how to develop public health programs and interventions. Students will learn the best ways to help solve the critical health issues affecting our communities at local, national, and international levels. Students will learn the start-to-finish processes of public health programming including understanding the problem using existent data, needs assessments/surveillance, using goals/objectives, basic design, message construction, planning, implementation, and creating an evaluation system that links back to goals/objectives. The course will also include an overview of effective evidence-based public health interventions that span multiple health domains and delivery modalities. Students will have the opportunity to create their own health programs through the quarter.

Computer Programming for Public Health

PBHS 34400 COURSE INSTRUCTOR: Jason Edelstein OFFERED: Winter PQ:

This course will provide an introductory and intermediate level overview of computer science and programming skills. Students will learn concepts in computer programming and how programming language works, as well as theories behind information system design and management. Specific topics include: Python and R programming language, data structures and management, algorithm design, data visualizations, and basic project management for reproducible research.

Machine Learning for Public Health

PBHS 34500 COURSE INSTRUCTOR: Eric Polley OFFERED: Spring

PQ: PBHS 32400/STAT 22400 or PBHS 32410 or equivalent AND PBHS 34400 or equivalent programming course. Limited to MPH Students; Consent of Instructor for PBHS Graduate and Doctoral Students

This course provides an introduction to machine learning in the context of public health and medical applications. Key concepts in the design and evaluation of machine learning algorithms will be presented. A variety of algorithms will be covered (e.g. random forests, splines, boosting, neural networks, and ensembles) and include hands-on experience with programming in *R*.

Mixed Method Research in Community Settings

PBHS 34600 COURSE INSTRUCTOR: David Moskowitz OFFERED: Winter PQ:

This course is designed to train students in mixed methods research design and evaluation. Mixed methods are the use of quantitative AND qualitative methods to explore health problems, engage communities, and evaluate solutions. It includes an in-depth discussion of the rationales for specific techniques and the role of theory in guiding and informing a health research project. Students will learn design considerations that are best suited for qualitative over quantitative methods (and vice versa) or both methods. Specifically, the course focuses on training, through lecture, group work and hands-on experiences, across five data collection methods commonly used in mixed methods research: survey design and implementation, observation, interview, focus group, and use of existing quantitative data. Students will undertake a pilot research study as a means of practicing their mixed methods approaches and data collection skills. Multiple data analyses techniques (e.g., content analysis, narrative analysis, multivariable model construction, qual-quant triangulation) will be conceptually explained. Students will leave the course with practical skills to conduct research through public health practice.

Community Health Promotion

PBHS 34700 COURSE INSTRUCTOR: Jasmin Tiro OFFERED: Winter PQ: PBHS 34100

A person's health depends not only their genes or behavior, but also where they live, learn, work, play, and age. This course examines how social and community structures and policies influence health and can produce health disparities. Structural issues (e.g., economic stability, housing, food security, health care access and quality, broadband access, health and digital literacy, violence, discrimination) are key social determinants of health. This course will describe and apply: 1) frameworks for understanding health determinants acting at multiple levels, and 2) community and structural intervention approaches to promote health. Students will learn how to prioritize among health determinants and select among intervention approaches to solve public health problems and improve public health practice.

Health Services Research Methods

PBHS 35100 COURSE INSTRUCTOR: Prachi Sanghavi

OFFERED: Spring

PQ: At least one course in linear regression and basic familiarity with STATA; or consent of instructor. CROSS-LIST ID: HLTH 29100; PPHA 38010; SSAD 46300;

The purpose of this course is to better acquaint students with the methodological issues of research design and data analysis widely used in empirical health services research. To deal with these methods, the course will use a combination of readings, lectures, problem sets (using STATA), and discussion of applications. The course assumes that students have had a prior course in statistics, including the use of linear regression methods.

Introduction to U.S. Health Policy and Politics

PBHS 35500

COURSE INSTRUCTOR: Loren Saulsberry OFFERED: Autumn PQ:

CROSS-LIST ID: HLTH 25500; PBPL 25500; SSAD 45011; PPHA 37720;

The purpose of this course is to introduce students to the concepts needed to critically evaluate U.S. health policy issues. The course will 1) provide an overview of the U.S. health system including its institutions, stakeholders, and financing mechanisms, 2) describe the politics of health and illuminate how the structure of our political system shapes health policy outcomes, and 3) offer a framework for assessing the critical features central to health policy debates. Building upon this knowledge, the course will conclude with a discussion of strategies for influencing the health policy process and how they might be employed in future leadership roles within the health sector.

Money, Medicine, and Markets: The Financialization of the US Health System

PBHS 35600

COURSE INSTRUCTOR: Joseph Bruch

OFFERED: Autumn

PQ: Health policy course

CROSS-LIST ID: HLTH 25600; SSAD 45601, PPHA 38340

This class tracks the complex and broad ways that money influences health and health care delivery in the United States with extensions to other national contexts. This course is designed to provide students with the tools to identify and examine the nature of capital and capitalism in shaping the health of Americans. The course starts by reviewing the macro changes in health care delivery in the US over the past century, including broad exposure to scholarship on financialization and its application to health care privatization and consolidation (Part 1). The course then visits different topics of health care where tensions between profit maximization, health care quality, and health equity are highly visible. These topics include non-profit vs. for-profit actors, private-public partnerships, the pharmaceutical industry, private equity activity, the insurance industry, physician entrepreneurs, global health funding, financial lobbying in health care, and the women's health industry (Part 2). Using concepts from political economy and epidemiology, the course then grapples with embodiment and the link between the financial system and population health through financial lending, macroeconomic conditions, economic inequality, and the commercial determinants of health (Part 3). This course exposes students to cutting-edge scholarship, drawing from a range of subjects, including health economics, public health, sociology, and political science.

Economic Analysis of Health Policies

PBHS 38010

COURSE INSTRUCTOR: Elizabeth Cliff

OFFERED: Winter

PQ: Microeconomics course; Consent of instructor for undergrads.

CROSS-LIST ID: HLTH 28010; PPHA 38290;

This course covers the foundations of the economics of health care as applied to current issues of health care policy. Content includes demand for health, medical care, and insurance; supply of medical care and behavior of health care practitioners; and economic perspectives on measurement in health care research. Using a combination of lectures, readings, problem sets, and discussion of newspaper and journal articles, the goal is for students to acquire a basic understanding of economic knowledge and thinking and to be able to apply that knowledge in analyzing policies. The course is open to graduate students and a limited number of undergraduates. A prior course in microeconomics is recommended; for those students without this preparation, the beginning of the course will include a short primer on key concepts in microeconomics.

Advanced Topics in Health Economics

PBHS 38400

COURSE INSTRUCTOR: Tamara Konetzka

OFFERED: Winter

PQ: Graduate courses in microeconomics and econometrics or statistics, including the use of linear and nonlinear regression methods.

The purpose of this course is to provide substantial exposure to the state of the evidence and the major theoretical and empirical approaches used to study salient issues in health economics. Selected topics may vary from year to year; examples include health capital, health insurance, health behaviors, health care market structure and competition, not-for-profit ownership, payment incentives, and the effects of information on provider behavior (e.g. public reporting and value-based purchasing) and consumer behavior (e.g., advertising and medical decision making). The course is aimed at students who wish to pursue a career in, or related to, health economics. Students will be expected to read each paper in depth, participate in discussions about them, and present and discuss several papers during the quarter. The instructors will assume that students have had prior graduate courses in microeconomics and econometrics or statistics, including the use of linear and nonlinear regression methods.

Master's Readings in Public Health Sciences

PBHS 39000 COURSE INSTRUCTOR: Varies Arrange course content and meeting times with instructor.

Master's Research in Public Health Sciences

PBHS 39100 COURSE INSTRUCTOR: Varies Arrange course content and meeting times with instructor.

MPH Practicum PBHS 39200

MPH Reading/Research PBHS 39210

MPH Capstone PBHS 39300

Advanced Epidemiologic Methods

PBHS 40500 COURSE INSTRUCTOR: Dezheng Huo OFFERED: Spring (Course not offered every year) PQ: PBHS 31001

This course examines some features of study design, but is primarily focused on analytic issues encountered in epidemiologic research. The objective of this course is to enable students to conduct thoughtful analysis of epidemiologic and other population research data. Concepts and methods that will be covered include: matching, sampling, conditional logistic regression, survival analysis, ordinal and polytomous logistic regressions, multiple imputation, and screening and diagnostic test evaluation. The course follows in sequence the material presented in "Epidemiologic Methods."

Applied Bayesian Modeling and Inference

PBHS 43010 COURSE INSTRUCTOR: Yuan Ji OFFERED: Spring PQ: STAT 24400 and STAT 24500 or master level training in statistics. CROSS-LIST ID: STAT 35920

Course begins with basic probability and distribution theory, and covers a wide range of topics related to Bayesian modeling, computation, and inference. Significant amount of effort will be directed to teaching students on how to build and apply hierarchical models and perform posterior inference. The first half of the course will be focused on basic theory, modeling, and computation using Markov chain Monte Carlo methods, and the second half of the course will be about advanced models and applications. Computation and application will be emphasized so that students will be able to solve real-world problems with Bayesian techniques.

Introduction to Causal Inference

PBHS 43201

COURSE INSTRUCTOR: Guanglei Hong

OFFERED: Winter

PQ: Intermediate statistics or equivalent such as PBHS 32400, PBHS 32410, PPHA 31301, BUS 41100 or SOCI 30005. CROSS-LIST ID: CHDV 30102 (Primary)

This course is designed for graduate students and advanced undergraduate students from social sciences, education, public policy, public health sciences, social service administration, and statistics who are involved in quantitative research and are interested in studying causality. The course begins by introducing the notion of counterfactual outcomes and various causal inference techniques that are comparatively new to most social scientists. A major emphasis will be placed on conceptualizing causal questions, comparing alternative research designs, and identifying the assumptions under which a causal effect can be estimated from non-experimental data. In addition to studying experimental, quasi-experimental, and non-experimental designs, students will become familiar with causal inference techniques suitable for evaluating binary treatments, concurrent multi-valued treatments, time-varying treatments, as well as moderated and mediated treatment effects in non-experimental data

Ph.D. Readings in Public Health Sciences

PBHS 49000 COURSE INSTRUCTOR: Varies Arrange course content and meeting times with instructor.

Ph.D. Research in Public Health Sciences

PBHS 49100 COURSE INSTRUCTOR: Varies Arrange course content and meeting times with instructor.